

Releases

Version Authors

0.1 Hielke Fellinger

0.5 Hielke Fellinger

0.6 Hielke Fellinger

0.9 Hielke Fellinger

0.9.1 Hielke Fellinger

0.9.2 Hielke Fellinger

0.9.3 Hielke Fellinger

0.9.4 Bas Krijgsman

0.9.5 Bas Krijgsman

2

Changes

Version Comments

0.1 Document Initialisation

0.5 Document Alfa release

0.6 Content updates

0.9 Document Beta release

0.9.1 Call updates

0.9.2 Added Authentication check call

0.9.3 Nullable FK columns now have default of NULL. Field length increased varchar
to minimum of 128 on most title and/or name fields.

0.9.4 Added Authentication creation

0.9.5 Added Authentication search call

V 0.9.5 2016-11-14

3

Table of Content

1. Introduction
1.1 Philosophy

2. Version One /v1/
2.1 Call Basics
2.2 Response Basics

2.2.1 Header Structure
2.2.2 Response Structures

2.3 Authentication & Security
2.3.1 Authentication
2.3.2 Checking user credentials
2.3.3 Security

2.4 Basic Actions (CRUD)
2.4.1 Create
2.4.2 Read
2.4.3 Update
2.3.4 Delete
2.4.5 Batch

2.5 Extra Calls
2.5.1 User

APPENDIX: A: /v1/ resources
A. Calendar
A. Calendargroup
A. Group
A. Auth
A. Groupcategory
A. News
A. Page
A. User
A. Poll
A. Eventcalendar
A. Event
A. Gallery
A. Galleryimages
A. Poll/Votes
A. Poll/Option
A. Event/Images
A. Event/Speaker
A. Eventcalendar/Participant
A. Eventcalendar/Lineup
A. Eventcalendar/Speaker

4

1. Introduction

This manual covers the information needed to interact with the first version of the external
API. The external API focuses on enabling basic interaction with the data behind Almanapp
software like the Almanapp APPMIN and the Almanapp APP itself. This manual
presupposes a working knowledge of an API’s workings, basic programming skills and a
knowledge of the accompanying literature and terms.

1.1 Philosophy

The main use of this first version is to check the need for an API to enable basic resource
synchronization to and from others sources. This version will be supplied (mostly) inline with
REST​ and ​OAuth​. Further development will be depending on the size of the userbase and
the set of features that can be enabled for current and potential customers. Possible further
developments will most likely include 3rd party access to supply their own custom, features
on the Almanapp APP Platform at the desire of customers.

This version of the API (v1) will remain online until, at the very least, the 31th December
2016 on the base of best effort (implicit and explicit guarantees can not be supplied).
Changes and Fixes to the API will be reflected in updated versions of this document as soon
as possible. Alterations to calls and their payloads itself will be avoided and will, most likely,
result in an available call on a higher version number.

1.2 General Technology

In the current version of the API responses will always be send as JSON (UTF 8; IETF
RFC4627) as a response to a HTTP request, however the groundwork for XML responses
are build in the background so this return type might become available in the future.

5

2. Version One /v1/

This chapter is to explain the interaction you can have with the /v1/ calls available in the
external API. Furthermore it will list the calls and possible responds those calls will deliver.

2.1 Call Basics

The /v1/ calls respond only to the HTTP Request types GET and POST, these are used for
the entire CRUD set. The HTTP request types PUT and DELETE will be responded with an
error. The correct request type and call are listed later on in this chapter.

In the aid of readability most Url’s have been shortened in this manual as following:
‘https://{BASE}/{UNION}/api/v1/{RESOURCE}/attribute1/attribute2’ to
‘https://{URL}/{RESOURCE}/attribute1/attribute2’

Call Structure:
All the calls elements use lowercase, an exception on this rule may be the attributes (6..n)

C2.EX1
(UKN.)

https://almanapp.nl/union/api/v1/news/attribute1(/attribute2(/))

Order Call url part Comments

0 http(s):// HTTP and HTTPS available, HTTPS recommended and
possible required in the future. In all examples HTTPS is
used

1 (www.)almanapp.nl/ Base of URL
further known as: {BASE}

2 union/ The Union or Company name you want CRUD access to
further known as: {UNION}

3 api/ Select the API

4 v1/ The version selector of the call, in this case: “v1”

5 news/ The Resource (Always Singular: “user instead of users”)
you want CRUD access to
further known as: {RESOURCE}

6..n attribute1(/attribute
2(/))

The attributed or filters to a call. The complexity is mostly
moved to the parameters of the corresponding HTTP
request

6

2.2 Response Basics

All responses types will be delivered encapsulated in a JSON Object (0...1 Items) or JSON
Array in the case in the possibility of returning, multiple values (0...N). In the current version
a limit attribute (to limit the size of the total return) is not yet available.

In this version there are two basic response type; The error response and the success
response. In both cases JSON will be returned solang as the requests are made inside of
the API’s reach. More about this subject in Chapter 2.2.2

2.2.1 Header Structure

Name Payload

Cache-Control no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Connection Keep-Alive

Content-Encoding gzip

Content-Type {VARIABLE}

Date {CURRENT_DATE}

Expires Thu, 19 Nov 1981 08:52:00 GMT

Keep-Alive timeout=1, max=100

Pragma no-cache

Server Apache/{VERSION}

Vary Accept-Encoding,User-Agent

X-Powered-By PHP/{VERSION}

The table above is the header returned from a HTTPS request. The current response header
focuses on stopping and eliminating request buffering, ensuring a more up-to-date result as
long as the header is not ignored.

7

2.2.2 Response Structures

Like stated in the beginning of Chapter 2, There are only two basic response types; the error
and the success response. Both of the response types will result in either a JSON message
as a result. Any status code other than the HTTP 200: “OK” will result in the return of an
error response.

Depth Content Comments

0 [...] / {...} JSON Array / Object

1 Attribute and there values variables in case of a
single object or zero to multiple JSON Objects
containing their values in the case of an JSON
Array in depth zero.

None

The success response comes in two different formats: as a JSON Array or Json Object. The
default return type is always a JSON Object. Note: A JSON Array is only and always used
when the call has the potential to return multiple items, even if the result set is smaller than
two to keep consistency.

1
2
3

{
 "error": {MESSAGE}
}

The error response will always be encapsulated in a JSON Object; according to the image
above. The error variable payload ({MESSAGE}) will be in English by default. Later this year
more languages will be supported. An exception to the rules stated above is in the case of a
total failure of the API Facade, in this case no guarantees can be given.

Used HTTP Status response codes:

Code Description

200 All successful responses will be supplied with an 200 OK. Response codes
201 to 2xx are not used in v1 calls

400 Bad request or bad request payload syntax. Used only in Create, Update,
Batch and Delete Calls

403 Authentication failed (Token request). Faulty or no token supplied in other calls

404 Call address with an specific HTTP request or the requested resource(s) have
not been found.

500 Internal Server error

8

2.3 Authentication & Security

In this Chapter the basic authentication and security features are explained. A more
comprehensive security description, of the items behind the API facade, are not included in
this document.

2.3.1 Authentication

Authentication in the API is done via is done via a token, This token can be obtained via a
successful HTTP GET request to the call: “C2.01A”. This token is required in every call,
except the handshake itself. The result of the query are handled later on in this chapter
(Token Request Result)

C2.01A
(GET)

{URL}/handshake/{username}/{password}(/{description})

Resource Description Optional

{username} A username name of an ‘admin’ or ‘superadmin’ of the
association given in ​{UNION}

No

{password} The password matching to the account given in
{username}. The value of the password variable is
removed before request logging occurs.

No

{​description​} Short, single word, description for the base of creating a
token

Yes

Token Use
Recommended is, if an automated task is not run daily or at a smaller interval, to create a
new token for every request to be ensured of access. To facilitate this, an ‘admin’ (default
management account) or ‘superadmin’ user can create up to 64 active tokens.

To use a token in a call, where authentication is required, append the following (HTTP GET
parameter) to the base of the URL: “?token={TOKEN}” (Example: C2.EX2). If you use the
token where no authentication is needed, the token is ignored and not eligible to the
automatic extension of its expire date as described in previous alinia.

C2.EX2
(UKN.)

{URL}/{RESOURCE}/{attribute1}(/)?token={TOKEN}

9

Token Request Result
The result of a successful token request call (C2.01A) is listed below.

1
2
3
4
5
6

{
 "token": {TOKEN},
 "expire": "2015-12-31 23:59:59",
 "description": {​description​},
 "securityLevel": "0"
}

Attribute Description

token A 64 character long randomized string consisting of lowercase
alphanumeric character.

expire The expire date of the token, default is set to seven days from the date
of the initial request. If the token is used in within the last 24 hours of
validity, the ​expire date in increased with 48 hours

description Short, single word, description of why this token was created. This
attribute is optional, if no description has been supplied an empty string
is returned.

securityLevel In this version only level 0 (zero) is available, indicating access to all
calls mentioned in Chapter 2

2.3.2 Checking user credentials

For the purpose of remote authentication a new call is introduced since 2016-02-29. This call
allows the checking of user credentials remotely for API users with a token (2.3.1
Authentication).

C2.01B
(GET)

{URL}/check/credentials/{username}/{password}

Checking user credentials this way does not grant access of that user to the API or any other
software in the Almanapp ecosystem. This call is purely used to verify the validity of the
supplied credentials. Users who are disabled will always result in the return of false.

Credential Checking Result
The result of a successful request call (C2.01B) is listed below.

1
2
3

{
 "result": {true/false},
}

10

2.3.3 Security

The term security in this manual and in this chapter cover only the data relevant to a user of
the API in a really abstract and broad form. Security Guidelines, Concepts and
Implementation thereof behind and inside the API facade are not covered in this manual at
all.

Security in the API focuses itself broadly on three key attributes: Confidentiality, Integrity and
Availability (CIA Triad). Talking on a superficial level, the confidentiality attribute is covered
by the token authorization (see Chapter 2.3.1) and the requirement of an ‘admin’ or
‘superadmin’ account for the creation of a token in the first place. However there no option to
create a token for a specific operation, call or resource. All tokens are created with equal
rights (Possibility to execute all calls). Sharing your token with a or multiple 3rd parties
and/or sending request through HTTP and not through HTTPS is extremely discurished.

Another important security attribute is the integrity of the data in the database. CRUD Calls
to the API are checked on the properties (and their limits) of the resources expected by the
database but nothing more. However there is an option to work with Transactions, via bash
calls (See Chapter 2.3.5), to enable conditional updates and possible item creation. On the
base of integrity please take note that the users have the possibility (by default) to edit their
own details in the App, making the Almanapp Database content possibly more up-to-date
than your current (local) user data.Last but not least is the security attribute Availability. A
general description of the security attribute to provide (timely) access to resources. Like
stated in Chapter 1.2 this API, gives no guarantees on (and not limited to) the metrics like
Availability and Performance. That said it is an upcoming focus.

11

2.4 Basic Actions (CRUD)

This Chapter covers the basic/default CRUD actions and the Batch update features of the
API almost every resource available from the API. The following resources, used as
implementation generic placeholder {RESOURCE}, are available for the mentioned CRUD
actions in this chapter (2.3):

Resource Description

calendar The calendar resource is used to display dates and their details for
agenda items.

group Defined here as a collection of users, it might be an organisational
unit, location or social club within the union or company.

groupcategory The types of groups there are inside the union. Types could be like
stated above; an organisational unit, location or social club.

news News items and their details.

pages General pages, not stuff like news, events or agenda items, Stuff
like The history of a union or the

user The members and or employees of the union, all of them including
users with the ‘admin’ and ‘superadmin’

event Scheduled events of the union

poll Contains the base data of the polls

galleries Contains the photo albums of the Union

galleryimage Contains Album images

Details on the resources and these variables are found in the Apendix: A. At the moment all
CRUD calls are done through the POST and GET HTTP request. The DELETE request, for
deletion, and the PUT request, for updates (W3C RFC2616), are both replaced by an url
alteration coupled with a POST request.

12

There are some secondary order attributes who differ slightly for there first order cousins.
The changes form the first order cousins are mainly on the requirement of the id attribute of
there first order cousens. The HTTP response codes noted in the chapters 2.4.x will remain
the same for the second order resources

Resource 2nd Order Description

poll/vote The passed votes on the different polls

poll/options The option of the different polls

event/lineup The possible lineup of the an event

The following CRUD calls will differ slightly for the second order attribute:

Create

C2.02 2nd
(POST)

{URL}/{RESOURCE 1ST}/{id RESOURCE 1ST}/{RESOURCE 2ND}/

So the create calls of the 2nd order resource vote on the 1ste poll might look
something like this:

C2.02 EX
(POST)

{URL}/poll/1/votes/

Read

The following calls are to receive all second order resources and a second order
resource bij its id respectably.

C2.03 2nd
(GET)

{URL}/{RESOURCE 1ST}}/{id RESOURCE 1ST}/{RESOURCE 2ND}/

C2.04 2nd
(GET)

{URL}/{RESOURCE 1ST}/}/{id RESOURCE 1ST}/{RESOURCE 2ND}/
{id RESOURCE 2ND}

13

2.4.1 Create

C2.02
(POST)

{URL}/{RESOURCE}

The creation of a new resource is done via a call POST request to the root of the resource.
The POST collection acts as an key value storage of the object you want to create. The
values received will undergo explicit type conversion. Please take note that if keys are found
that don’t match with the attributes of the object they are ignored without feedback.

If the insertion of the new object is a success (HTTP status 200: “OK”) a success response
will be send containing the newly created object for client side verification. The returned
resource object is not subject to the explicit type conversion, if you send an attribute as
String value, containing the for that object’s attribute ‘required’ int, the API will type
conversion to the database but not to the returned object.

Used HTTP Status response codes:

Code Description

200 Everything went successful. The newly created object of the resource is
returned.

400 Object is not created due to bad syntax and/or missing

500 Internal Server error

2.4.2 Read

C2.03
(GET)

{URL}/{RESOURCE}

C2.04
(GET)

{URL}/{RESOURCE}/{id}

There are multiple ways of getting instances of the resources. The default ways are the get
by ID (C2.03) and the get entire collection (C2.03) calls. At the moment there is no option to
enact a Limit on the number of returned objects (Call C2.03 & C2.05), so be aware of
possible large waiting times and high data throughput for call result of large collections.

14

C2.05
(POST)

{URL}/{RESOURCE}/search(/{operator}(/{like}/(negate)))

Resource Description Optional

{operator} The operator used in the underlying SQL type
statement ‘and’ or ‘or’. Every string except ‘or’ will
result in the use of ‘and’.
Default: ‘and’, not case sensitive.

Yes

{like} Cast all string types in a SQL LIKE ‘%{VALUE}%’
type construction for the underlying SQL type
statement. Every string except ‘false’ and ‘no’ will
result in the use of ‘true’.
Default: ‘false’ not case sensitive.

Yes

{​negate​} Negate the entire selection form: “select all that”
to: “select all that do not have”. Every string except
‘false’ and ‘no’ will result in the use of ‘true’.
Default: ‘false’, not case sensitive.

Yes

As in most REST implementation filtering of resources is usually done by extending the url
and/or adding multiple GET parameters, however this is not yet supported in the current
version. An alternative is delivered in the form of the search call (C2.05). This call enables
filtering through the use of the POST attribute as a key values store (The values received will
undergo explicit type conversion). Just like the create an update statement the POST
attributes (key value) are used to represent the attributes and their value. For the moment is
it only possible to use one value per attributes for the filtering.

Used HTTP Status response codes:

Code Description

200 Everything went successful. The newly created object of the resource is
returned.

400 Object is not created due to bad syntax and/or missing variables

404 Object is not found (Applicable to C2.03 & C2.04)

500 Internal Server error

15

2.4.3 Update

C2.06
(POST)

{URL}/{RESOURCE}/{id}

Resource Description Optional

{id} The API Id of the resource object you would
like to change.

No

Instead of a PUT request this call is handled by an POST request following the same rules
as the creation of an object of a resource (chapter 2.3.1). It might be a hassle to update
multiple items, for that functionality the batch call has been created see: Chapter 2.3.3

Used HTTP Status response codes:

Code Description

200 Everything went successful. The newly updated object of the resource is
returned.

400 Object is not updated due to bad syntax and/or missing variables

404 The Object you want to update can not be found

500 Internal Server error

2.3.4 Delete

C2.07
(POST)

{URL}/{RESOURCE}/delete/{id}

Resource Description Optional

{id} The API Id of the resource object you would
like to delete.

No

Instead of a DELETE request this call is handled by a POST request to delete a resource
object. Further values and the handling of the POST attributes are not done. WARNING: All
linked data to this object and this object itself are deleted and not just disabled.

16

Used HTTP Status response codes:

Code Description

200 Everything went successful. The just deleted object of the resource is returned.

400 Object is not updated due to bad syntax and/or missing variables

404 The Object you want to update can not be found

500 Internal Server error

2.4.5 Batch

C2.08
(POST)

{URL}/batch/{RESOURCE}

The batch call is a combination of the create and the update call for multiple objects (1...n) of
the resource. As an extra feature the batch procedure runs in a SQL type Transaction;
meaning it will ‘reserve’ the changes in the database and if no faults have been found the
changes will be committed else an error message of the first found error is returned.

POST attribute Description

json Containing all the changes in a big JSON Array, following the
resource attribute requirements and naming. Appendix: ​A

uniqueKeys The set of resource attributes that create a object identifier
(Primary Key). Example: The combination of ‘name’ and ‘birthday’
make a unique cobination for all objects you would like to commit
in the JSON Array: So for this example the value of uniqueKeys
will be: [“name”,“birthday”]

The way to handle this call is rather different form the other calls; it uses the POST request
in a different way (as seen in the table above). This call is designed for high numbers of
data, and only returns the first error it encounters and not all the errors of the whole set
inside of an error response (See an example below).

1
2
..
3

{
 "error": "Entity: {i} of {n} Has errors during updating Dump: {"error":["Set Field does
not exist: {wrong value}"]}"
}

Like stated earlier, the batch call is a combination of the create and the update call for
multiple objects (1...n). This call parses every send resource object (in the POST json
attribute) one by one and if the provided ​uniqueKeys do not supply a match within the
database the ​resource object is entered as a new database element. If one element has
been found it overwrites the object in the database with the supplied resource object,

17

however if there are more than 1 objects found as result of the ​uniqueKeys combinations an
error will be provided.

At the moment it is not able to change the ​batch call settings (like to only update, create or
delete) Please take note that the limits of this call have not been fully tested, however do to
the use of transactions it does not commit the changes until you receive a HTTP 200: “OK”
response.

Used HTTP Status response codes:

Code Description

200 Everything went successful. returns a JSON Object containing a scalar with the
value true

400 The entire set of Objects (1..n) is not updated or created due to bad syntax
and/or missing variables.

500 Internal Server error

2.5 Extra Calls

This Chapter covers the extra calls available to some of the Resources, these extra calls are
grouped by resource in the following sub-chapters. These extra calls are mainly there to
supply connections/links between the main resources (‘Junction Tables’ in SQL
terminology).

2.5.1 User

The user resource is in widely used in connection of multiple resources at the moment only
the interaction between the user resource and the group resource is enabled. Only Create
and Read calls are available.

C2.09
(GET)

{URL}/user/{id}/group

Resource Description Optional

{id} The API Id of the user object you would like to see all the
groups and the functions within those groups from.

No

At the moment there is no option to enact a Limit on the number of returned objects, so be
aware of possible large waiting times and high data throughput for call result of large
collections on slow connections.

18

Used HTTP Status response codes:

Code Description

200 Everything went successful. Return a JSON Array containing functions

400 Object is not created due to bad syntax and/or missing variables

500 Internal Server error

C2.10
(POST)

{URL}/user/{id}/group/{groupId}(/{function})

Resource Description Optional

{id} The API Id of the user object you would like to alter. No

{groupId} The API Id of the group object you would like to add to
the user.

No

{function} The possible function of the user in the group Yes

Just the request is is needed to complete the request, no payload in the POST request and
actively ignored. If the insertion of the new relation is a success (HTTP status 200: “OK”) a
success response will be send containing the newly created object for client side verification.
The returned resource object is not subject to the explicit type conversion, if you send an
attribute as String value, containing the for that object’s attribute ‘required’ int, the API will
type conversion to the database but not to the returned object.

Further calls Update and Deletion of users to a group will come available soon, to completely
enable CRUD all the core Almanapp APP data.

Used HTTP Status response codes:

Code Description

200 Everything went successful. Return a JSON Array containing

404 The Object you want to update can not be found

500 Internal Server error

C2.11
(GET)

{URL}/user/{id}/auth/id

19

Resource Description Optional

{id} The API Id of the user object you would like to
alter.

No

This call enables the translation of a User id to a auth Id. This call is created to support
relations on other tables via a requested auth id.

Used HTTP Status response codes:

Code Description

200 Everything went successful. Return a JSON Array containing authId

404 The Object you want to update can not be found

500 Internal Server error

20

APPENDIX: A: /v1/ resources

Resource Description

calendar The calendar resource is used to display dates and their details for
agenda items.

calendargroup Categories of calendar available

group Defined here as a collection of users, it might be an organisational
unit, location or social club within the union or company.

groupcategory The types of groups there are inside the union. Types could be like
stated above; an organisational unit, location or social club.

news News items and their details.

pages General pages, not stuff like news, events or agenda items, Stuff like
The history of a union or the

user The members and or employees of the union, all of them including
users with the ‘admin’ and ‘superadmin’

poll Contains base data of the polls

event Contains the events scheduled

eventcalendar Links an event and calendar item together. Also used to track event
participation and subscription.

gallery Photo albums of the union

galleryimage Photo’s inside the album

Resource 2nd Order Description

poll/vote The passed votes on the different polls

poll/options The option of the different polls

event/image The possible Images of the an event

event/speaker The possible Speakers of the an event

eventcalendar/lineup The possible lineup of the an eventcalendar

eventcalendar/speaker The possible Speakers of the an eventcalendar

eventcalendar/participant The Participants to an eventcalendar

21

All Resources above have been supplied with an ‘id’ attribute as follows:

Attribute Type Optional Description

id int(11) No Unique identifier in the API. When updating
it will be created (than it is optional).

The ‘id’ attribute serves as the primary key for all the resources mentioned above. When the
manual references ‘API id of a {RESOURCE} object’ this is the value that is mentioned

A. Calendar

Values and requirements

Attribute Type Optional Description

title varchar(64) No Event Title

image varchar(128) No URL, Image will be buffered in local image
server. Empty string allowed

text mediumtext No Text about the event. Empty string and
HTML allowed.

json mediumtext No Extra attributes, created by Almanapp
APPMIN. Empty string allowed

start timestamp No Date in Unix timestamp

end timestamp No Date in Unix timestamp

created_on timestamp No Date in Unix timestamp

created_by timestamp No Date in Unix timestamp

rights int(11) Yes Who will be able to view the data. 0 (zero)
no one, 1 (one) Guests, 2 (two) Users.
Works as binary

public tinyint(1) No Who will be able to view the data. 0 (zero)
Users, 1 (one) The rest.

event_
calendar_id

int(11) Yes Links to API ID of event calendar (not yet
supported)

calendar_
group

int(11) No Links to API ID of a calendargroup object.
Allowed to be 0 (zero)

22

A. Calendargroup

Values and requirements

Attribute Type Optional Description

name varchar(128) No Group Name

color varchar(7) No RGB color in hex. Like #DDDDDD

A. Group

Values and requirements

Attribute Type Optional Description

name varchar(128) No Group Name

image varchar(128) No URL, Image will be buffered in local image
server. Empty string allowed

year int(11) No Year of creation

public tinyint(1) No Who will be able to view the data. 0 (zero)
Users, 1 (one) The rest.

category timestamp No API id of a groupcategory object

data mediumtext Yes (Legacy)

data_extra mediumtext Yes (Legacy)

external_id varchar(254) Yes External Identifier

date_updated timestamp Yes Last time updated

23

A. Auth

Values and requirements

Attribute Type Optional Description

name varchar(128) No Login name

user_id int(11) No Id of the user

right_group enum(10) No ‘user’ or ‘admin’

disabled tinyint(1) No 0 = Can login
1 = Can’t login

external_id varchar(254) Yes External Identifier

date_updated timestamp Yes Last time updated

Batch calls are not available on this route.

Attributed only available on create or update:

Attribute Type Optional Description

password varchar(128) Yes Password (Plain)

24

A. Groupcategory

Values and requirements

Attribute Type Optional Description

name varchar(128) No Group Category Name

color varchar(10) No RGB color in hex. Like #DDDDDD

icon varchar(256) No URL, Image will be buffered in local image
server. Empty string allowed

category_group
_by

varchar(32) Yes Set sorting in list year or name

user_list_group
_by

varchar(32) Yes Set sorting in list year or name

external_id varchar(254) Yes External Identifier

date_updated timestamp Yes Last time updated

type varchar(256) Yes Type Description

25

A. News

Values and requirements. The resource will require some work. The addition of a Auth
(Authentication) object or the retrieval of Auth information via the user calls

Attribute Type Optional Description

user int(11) No API id of a auth object, will be set to a
default

public tinyint(1) Yes (Legacy) Who will be able to view the data.
0 (zero) Users, 1 (one) The rest.

title varchar(128) No News Title

image varchar(128) No URL, Image will be buffered in local image
server. Empty string allowed

text mediumtext No Text about the news. Empty string and
HTML allowed.

created_on timestamp No Date in Unix timestamp

attachments json No Special attachments holder. Empty string
and HTML allowed .

external_id varchar(254) Yes External Identifier

date_updated timestamp Yes Last time updated

flags int(11) Yes Default 0 (zero) Not yet implemented

time int(11) No Timestamp of launch

link varchar(1024) No Linked item as URL

26

A. Page

Values and requirements. The resource will require some work. The addition of a Auth
(Authentication) object or the retrieval of Auth information via the user calls

Attribute Type Optional Description

auth_id int(11) No API id of a auth object, will be set to a
default

image varchar(128) No URL, Image will be buffered in local image
server. Empty string allowed

public tinyint(1) Yes (Legacy) Who will be able to view the data.
0 (zero) Users, 1 (one) The rest.

created_on timestamp No Date in Unix timestamp (Creation)

title varchar(64) No Page Title

text longtext No Text about the news. Empty string and
HTML allowed.

attachments json No Special attachments holder. Empty string
and HTML allowed .

external_id varchar(254) Yes External Identifier

date_update
d

timestamp Yes Last time updated

link varchar(1024) No Linked News or other item as URL

27

A. User

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

identifier varchar(128) Yes External Unique identifier (PK)

second
name

varchar(32) Yes ..

middlename varchar(32) Yes ..

firstname varchar(32) Yes ..

bank_
number

varchar(42) Yes ..

bank_user_
field

varchar(32) Yes Name of account owner used for sending.
Example ‘G. Orwell’

phone1 varchar(64) Yes Landline of user

phone2 varchar(32) Yes Mobile Phone of user

phone3 varchar(32) Yes ..

email varchar(32) Yes User’s email

email2 varchar(128) Yes ..

gender varchar(1) Yes Gender M/F (Or local language)

year int(11) Yes Year formated as ‘2001’

birthday varchar(32) Yes Date of birth

image varchar(128) Yes URL, Image will be buffered in local image
server. Empty string allowed

search_name varchar(32) Yes Name used for searching

study_name varchar(32) Yes Study subject

student_nr varchar(32) Yes Student id/number

contact_name varchar(32) Yes Contact (like parents etc.) name

Continues on next page.

28

A. User (cont.)

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

join_date varchar(32) Yes ...

educational_direction varchar(3) Yes Field of study

faculty varchar(32) Yes ..

study varchar(3) Yes Name of study

lastname varchar(64) Yes ..

initials varchar(10) Yes ..

title varchar(10) Yes ..

address1_city varchar(32) Yes First address

address1_country varchar(32) Yes ..

address1_number varchar(32) Yes ..

address1_number_
addition

varchar(32) Yes ..

address1_street varchar(64) Yes ..

address1_
postalcode

varchar(32) Yes ..

address2_city varchar(32) Yes Second address

address2_country varchar(32) Yes ..

address2_number varchar(32) Yes ..

address2_number_
addition

varchar(32) Yes ..

address2_
postalcode

varchar(32) Yes ..

address2_street varchar(32) Yes ..

contact_street varchar(32) Yes Contact (like parents etc.)

Continues on next page.

29

A. User (cont.)

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

contact_city varchar(32) Yes ..

contact_phone1 varchar(32) Yes ..

contact_country varchar(32) Yes ..

contact_email varchar(32) Yes ..

contact_number varchar(32) Yes ..

contact_number_
addition

varchar(32) Yes ..

contact_phone2 varchar(32) Yes ..

gallery_id varchar(32) Yes (Legacy)

insert_date timestamp Yes (auto)

update_date timestamp Yes (auto)

notes mediumtext Yes ..

notes_extra mediumtext Yes ..

type varchar(32) Yes Empty string allowed

disabled tinyint(1) Yes 0 / 1 (1=Disabled) Default 0

vo_notification tinyint(1) Yes 0 / 1 (0=Disabled) Default 1

date_updated timestamp Yes Last time updated

nationality varchar(32) Yes

custom_fields text Yes Json metadata, required is some
student app forms

30

A. Poll

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

question varchar(250) No Question of the poll

start datetime No Startdate Poll

end datetime No Enddate Poll

auth_id int(11) Yes Auth id of user created image

show_on_wall tinyint(1) Yes Allow showing on wall (0=Disabled)

external_id varchar(254) Yes External Identifier

hide_answer tinyint(1) Yes Allow showing off answers
(0=Disabled)

A. Eventcalendar

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

event_id

int(11) No API id of an event object

participation int(11) No Number of current participation

max_participants int(11) No Max. number of participants

calendar_id int(11) Yes API id of a calendar object

subscribe_start datetime No Start date and time of subscription
period

subscribe_end datetime No End date and time of subscription
period

31

A. Event

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

title varchar(128) No Title of Event. Empty string allowed

day date No Start date and time of event

text mediumtext No Text explaining event. Empty string
allowed

image varchar(64) No URL, Image will be buffered in
local image server. Empty string
allowed.

external_id varchar(254) Yes External Identifier

date_updated timestamp Yes Last time updated

type enum('time',
'date')

No Set event as a time (like
lunch/happy hour) or date (like
anniversary) focused event

guest_message mediumtext No Guest message for guest user type
if guesguest_mode is enabled.
Empty string allowed.

has_info tinyint(1) No Boolean type option. Set to 1 (one)
to set the presence of info

info mediumtext No Extra information if has_info is
enabled. Empty string allowed.

speakers tinyint(1) No Boolean type option. Set the
presence of info

guest_mode

tinyint(1) No Boolean type option. Set to 1 (one)
to use guest_mode

info_url mediumtext No Link to extra info page. Empty
string allowed.

group int(11) No API id of an group object. Used to
assign event to a group. 0 (zero) is
allowed

survey_url mediumtext No Link to extra survey. Empty string
allowed.

32

A. Event (cont.)

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

event_image_heade
r_image

varchar(64) Yes URL, Image will be buffered in
local image server. Empty string
allowed.

event_image_backg
round_image

varchar(64) Yes URL, Image will be buffered in
local image server. Empty string
allowed.

speaker_name varchar(64) Yes Name of speaker

auth_id int(11) Yes Auth id of event organizer.
default: NULL

A. Gallery

Values and requirements. Check current use of field before use. The addition of a Auth
(Authentication) object or the retrieval of Auth information via the user calls

Attribute Type Optional Description

title varchar(64) No Title of Event. Empty string allowed

rights int(11) No Who will be able to view the data.
0 (zero) no one, 1 (one) Guests, 2
(two) Users. Works as binary

text mediumtext No Text explaining event. Empty string
allowed

image varchar(64) No URL, Image will be buffered in
local image server. Empty string
allowed

auth_id int(11) Yes Auth id of user image author

external_id varchar(254) Yes External Identifier

date_updated timestamp Yes Last time updated

33

A. Galleryimages

Values and requirements. Check current use of field before use. The addition of a Auth
(Authentication) object or the retrieval of Auth information via the user calls

Attribute Type Optional Description

title varchar(128) No Title of Event. Empty string allowed

gallery_id int(11) No Id of API element gallery that
contains this image

text mediumtext No Text explaining event. Empty string
allowed

url varchar(128) No URL, Image will be buffered in local
image server. Empty string allowed

auth_id int(11) No Auth id of user created image

external_id varchar(254) Yes External Identifier

date_updated timestamp Yes Last time updated

A. Poll/Votes

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

poll_id int(11) No Id of API element: poll

user_id int(11) No Id of API element: user

created_at timestamp Yes Time created

updated_at timestamp Yes Last time updated

34

A. Poll/Option

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

poll_id int(11) No Id of API element: poll

value varchar(200) No Date and time of last vote

external_id varchar(254) Yes External Identifier

created_at timestamp Yes Time created

updated_at timestamp Yes Last time updated

A. Event/Images

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

title varchar(128) No Title of image. Empty string allowed

event_id int(11) No Id of API element: event

image varchar(128) No URL, Image will be buffered in local
image server. Empty string allowed

created_at datetime Yes Time of upload

updated_at datetime Yes Last time updated

35

A. Event/Speaker

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

name varchar(128) No Full name of the speaker

event_id int(11) No Id of API element: event

image varchar(128) No URL, Image will be buffered in local
image server. Empty string allowed

description mediumtext No Description and background of
speaker

created_at datetime Yes Time of upload

updated_at datetime Yes Last time updated

A. Eventcalendar/Participant

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

kicked tinyint(1) Yes Registered the removal of the
participant. 1 (One) means user is
kicked. Default is 0 (Zero)

event_calendar_id int(11) Yes Id of API element: eventcalendar

calendar_id int(11) No Id of API element: calendar

auth_id int(11) No Auth id of user (participant)

created_at datetime Yes Time of upload

updated_at datetime Yes Last time updated

36

A. Eventcalendar/Lineup

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

title varchar(128) No Title of Even line-upt. Empty string
allowed

event_calendar_id int(11) Yes Id of API element: eventcalender

image varchar(64) No URL, Image will be buffered in local
image server. Empty string allowed

artist varchar(64) No The name of the artist, band or
public speaker

description mediumtext No Description of this event lineup

start datetime No Start of this lineup element

end datetime No End of this lineup element

date_updated timestamp Yes Last update on this object

external_id varchar(254) Yes External Identifier

A. Eventcalendar/Speaker

Values and requirements. Check current use of field before use.

Attribute Type Optional Description

event_calendar_id int(11) No Id of API element: eventcalendar

speaker_id int(11) No Id of API element: event

37

